Browse/search for people

Publication - Dr Margaritis Voliotis

    Statistical mechanics of tuned cell signalling

    sensitive collective response by synthetic biological circuits

    Citation

    Voliotis, M & Liverpool, T, 2017, ‘Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits’. Journal of Statistical Mechanics: Theory and Experiment, vol 2017.

    Abstract

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

    Full details in the University publications repository